
Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 5; January-March, 2015, pp. 386-389
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/jbaer.html

A Review on an Efficient Implementation of H.264
Video Encoder DCT Transform and Quantization

Hemika1 and Poornima Sharma2
1,2M.Tech (VLSI Design) Banasthali University (Rajasthan)

E-mail: 1hemikayadav90@gmail.com, 2poornima.sharma829@gmail.com

Abstract—H.264 is a digital video codec eminent for high data
compression while maintaining high quality. Codec is usually used
for videos uploaded to the web. It is the Part of the MPEG-4 codec.
One of the very nice things about H.264 is that we can use it at very
low and very high bitrates. In this paper, we present hardware
efficient architecture for 8x8 transform and quantization for H.264
encoder. For transformation, 2D-DCT (discrete cosine
transformation) is used. Quantization which is used to convert
transform coefficient into integer value which is implemented in
Verilog. To implement the architecture in Verilog HDL we used
shifters instead of multiplier to reduce complexity of computation.

Index terms: DCT, H.264, and Quantization.

1. INTRODUCTION

In today’s trend, H.264 is a high definition digital video. It
will send highly compressed low resolution video across the
web and then encode high definition movie at super high
bitrates for delivery to a High Definition television. This is
very common codec for camcorders and digital video cameras.
Its container is AVCHD (advanced video coding high
definition). H.264/MPEG-4 part10 AVC is block oriented
motion-compensation-based video compression standard
developed by the ITU-T Video Coding Experts Group
(VCEG) together with the ISO/IEC JTC1 Moving Picture
Group (MPEG). The project

Corporation effort is known as the Joint Video Team (JVT).

Transform coding techniques have turn into the essential
model in image and video coding standards, in which Discrete
Cosine Transform (DCT).In Video encoder performs video
data compression by combination of main modules such as
Motion estimation and compensation, Transformation,
Quantization and Entropy encoding. Among these modules,
transformation is the module of removing the spatial
redundancy that exists in the spatial domain of video
sequence. Discrete Cosine Transformation (DCT) is the
transformation method in existing image and video coding
standards. This paper presents efficient implementation of
DCT Transform.

In H.264, video is captured as a series of frames. Each frame
is compressed by partitioning it as one or more slices, where
each slices consists of sequence of macro blocks. These macro
blocks are transformed and quantized. The transformation
module converts the frame data from time domain to
frequency domain, which intends to decor relate the energy i.e.
amount of information present in the frame. Since the
transformation module is reversible in nature, this process
does not change the information content present in the source
input signal during encoding and decoding process.

In fact, the initial specification adopted an integer
approximation of 4x4[1]. But, the 4x4 block is not enough for
SD resolutions and above. That is, when larger then 4x4
transforms are used, significant compression performance
gains have been reported are Standard Definition (SD) and
High Definition (HD) resolutions [2]. Thus, an 8x8 transform
and quantization is represented here. Previous works have
been successes in hardware implementation of transform and
quantization. In [3], Proposed a design with a high through-put
and low latency architecture using CSD multiplier for shared
quantization inverse –quantization. However, the disadvantage
is that their hardware implementation area could not be
significantly reduced.

In this paper, efficient hardware 2D-DCT and quantization
architecture which have minimum complexity for 8x8 with
reduced parallelism. This is prepared as follows. Section 2
presents review of 2D-DCT Transform. Section 3 describes
quantization used in H.264 encoder. Section 4 describes the
proposed architecture and performance analysis; conclude in
section 5, future work in section 6, acknowledgement in
section 7 and references in section 8.

2. 2D-DCT TRANSFORM

The H.264 integer transform is a fundamental form of Discrete
Cosine Transform: all operations can be performed by using
shift, add and multiply arithmetic, it is possible to ensure zero
mismatches between compressor and decompresses. The main
part of transform can be done using additions and shifts. A

A Review on an Efficient Implementation of H.264 Video Encoder DCT Transform and Quantization 387

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 5; January-March, 2015

scaling multiplication is integrated to the quantizer which
decreases the total number of multiplications. In [9]-[11]
proposed 8x8 integer approximation of DCT. It consists of add
and shifts without any multiplication. The 4x4 DCT of an
input array X is given by:

Y=AXAT i.e.

Where
a = 1/2, b = 1/2cos π/8 or 2/5 and
c = 1 / 2 cos(3π/ 8)

Hardware architecture of 8x8 integers transform for H.264
which promises very low resources utilization. In the
architecture, each pixel is processed one by one on a
simplified pipeline without multiplication. Thus, undesired
modules, which are used for block-based or row-based parallel
processing, can be reduced.

The 2-D forward 8x8 transform is computed in a separable
way as a 1-D horizontal (row) transform followed by a 1-D
vertical (column) transform, where the corresponding 1-D
transforms are given by Equation (1) and Matrix shown below,

W= CXCT (1)

Matrix C 8x8 is specified as

The architecture of 1-D integer transform is shown in Fig. 1.
Each input column vector of 8 pixels is input to the 1-D DCT
block for 8 cycles, so transformed outputs w0-w7 are also held
for 8 cycles. However, just one out of w0-w7 is output through
MUX. That is, w0, w1…... w7 go out of the 1-D DCT in
sequential order for 8 cycles. After all, 64 cycles are required
to process all pixel elements in one 8x8 block.

Each of these 1-D transform can be computed via fast
butterfly operations as follows:

Fig. 1: 1D Row (column) transform block

Data-path 1:
a[0] = x[0]+x[7]
a[1] = x[1]+x[6]
a[2] = x[2]+x[5]
a[3] = x[3]+ x[4]
a[4] = x[0] –x[7]
a[5] = x[1]-x[6]
a[6]= x[2]-x[5]
a[7]= x[3]-x[4]

Data-path 2:
b[0]= a[0]+a[3]
b[1]= a[1]+a[2]
b[2]= a[0]-a[3]
b[3]= a[1]-a[2]
b[4]= a[5]+a[6]+((a[4]>>1)+a[4])
b[5]= a[4]-a[7]-((a[6]>>1)+a[6])
b[6]= a[4]+a[7]-((a[5]>>1)+a[5])
b[7]= a[5]-a[6]+((a[7]>>1+a[7])
Data-path 3:
w[0]= b[0]+b[1]
w[2]= b[2]+(b[3]>>1)
w[4]= b[0]-b[1]
w[6]= (b[2]>>1)-b[3]
w[1]= b[4]+(b[7]>>2)
w[3]= b[5]+(b[6]>>2)
w[5]= b[6]-(b[5]>>2)
w[7]= -b[7]+(b[4]>>2)

3. QUANTIZATION

H.264 standard supports both 4x4 and 8x8 quantization.
Quantization reduces the precision of the transform
coefficients according quantization parameter. Original
coefficient values is divided by a QP and rounded to the
nearest integer. Setting QP to high means that more
coefficients are set to zero, resulting in high compression but
degrade quality.

Hemika and Poornima Sharma

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 5; January-March, 2015

388

Quantization and scaling is performed according to the
following equation:
Zij= round (Wij x PF/Qstep)

Where PF is a2, ab/2 or b2/4 depending on the position (i,j).
For position (0, 0), (2, 0), (0, 2), or (2, 2) PF is a2. For (1, 1),
(1, 3), (3, 1) or (3, 3) PF is b2/4 and other position PF will be
ab/2. The factor (PF/Qstep) is implemented in H.264 as
multiplication factor (MF) depending on the position of the
coefficient.
Zij= round (Wij x MF/2qbits) where
MF/2qbits=PF/Qstep and qbits =16+n
Therefore, equation can be written as:
 Zij= (Wij*MF+ f * 216+n) >> (16+n)

Where n is QP/6. QP is the quantization parameter which
specifies MFs, and f is the dead zone/offset parameter with an
absolute value ranging between 0 and 1/2 and with the same
sign as the coefficient that is being quantized. QP is the
quantization parameter ranging from 0 to 51.

In case of H.264 as specified in, multiplication factor MF
depands on m(=QP/6) and the position(i,j) of the element.
Total of 52 values of Qstep are supported by the standard and
these are indexed by QP. The values of Qstep corresponding to
each QP are shown in table 1. Note that, Qstep doubles in size
for every increment of 6 in QP and Qstep increases by 12.5%
for each increment of 1 in QP.

Table 1: Quantization step sizes in H.264

QP 0 1 ….. 4 …. 11 12
Qstep 0.625 0.6875 …. 1 … … 25
QP …. 18 …. .. … … 51
Qstep …. 5 …. .. … … 224

This standard specifies the first six values of MF as shown in
Table 2. For QP>5 the factor MF remains unchanged but the
value of qbits will change. For example, qbits=16 for 0 ≤ QP ≤
5 (as qbits =16 +QP / 6), qbits =17 for 6 ≤ QP ≤11 and so on.

4. PROPOSED WORK

The block diagram of the architecture for 8×8 integer
transform and quantization is presented in Figure2, which
contains 1-D DCT transform blocks, transpose logic,
quantization block and control logic.In this system word
length is 16-bit. This architecture clearly reflects two separate
1-D integer transforms and quantization. In the architecture,
each pixel is processed one by one on a simplified pipeline
without multiplication. The pixel by- pixel processing can
remove unnecessary modules used for block-based or row-
based processing in not only the integer transform block but
the quantization block.

Fig. 2: Architecture of transform and quantization

5. CONCLUSION

Here we represented a review of an efficient implementation
of a 2d-DCT transform and quantization for H.264. It supports
most of video formats which satisfying real-time constraints.
In this implementation, each pixel is processed by pipelined
and this pipelined structure can eliminate unnecessary
modules used for row-based processing. To implement the
architecture in Verilog HDL, we used shifters instead of
multiplier to reduce the computation time.

6. FUTURE WORK

We will synthesis this architecture in xilinx Virtex IV.After
observing the synthesis results we will further try to reduce
area occupied by our architecture, to improve speed and to
reduce power consumption.

7. ACKNOWLELDGEMENT

To determine, analyze and to present something new is to
venture on an untraded path towards an unexplored destination
is an arduous adventure unless one gets a true torchbearer to
show the right way. We would have never succeeded in
completing our task without the support, encouragement and
help provided to us by various people. The enlightening
guidance, we found in our revered guide Mr. Dharmendra
Kumar, Senior Design Engineer, Silicon Mentor, and Greater
Noida, without whose patronization it was never possible to
give final shape to this project. We wish to express our deep
gratitude towards him for providing individual guidance.

A Review on an Efficient Implementation of H.264 Video Encoder DCT Transform and Quantization 389

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 5; January-March, 2015

REFRENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra ,
“Overview of the H.264/AVC Video Coding Standard,”IEEE
Trans. Circuits Syst. Video Technol., Vol. 13, no. 7, pp. 560-
576, July 2003.

[2] S. Gordon, D. Marpe, and T.Wiegand, “ABT for Film Grain
Reproduction in High Definition Sequences,”Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT-H029,
Geneva, Switzerland, May 2003.

[3] C.-P. Fan and Y.-L. Cheng, “FPGA implementations of low
latency and high throughput 4x4 block texture coding processor
for H.264/AVC,” Journal of the Chinese Institute of Engineers,
vol. 32, no. 1, pp. 33–44, 2009.

[4] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,
“Low-complexity transform and quantization in H.264/AVC,”
IEEE Transactions on Circuits and Systems for Video
Technology, pp. 598–603, 2003.

[5] J.-K. Lee and K.-D. Chung, “DCT block conversion for
H.264/AVC video transcoding,” in Euro-Par 2005 Parallel
Processing, Lisbon, Portugal, September 2005, pp. 919–927.

[6] Jeoong Sung Park and Tokunbo Ogunfumi, “A New Hardware
Implementation Of the H.264 8x8 Transform And
Quantization,” IEEE 978-1-4244-2354-5/09/$25.00 ©2009.

[7] R. Korah, J. Raja Paul Perinbam, “FPGA implementation of
integer transform & quantizer for H.264 Encoder,” Journal of
VLSI signal processing systems - Springer, 2008.

